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Abstract The grain-size dependence of impedance spectra

of electroceramics is simulated, based on a brick layer model

with explicit consideration of parallel boundaries. A constant

grain interior conductivity is assumed and the grain bound-

ary (gb) conductivity is varied. Parallel and series gb are

assumed isotropic, i.e. charge transport along and across gb

is supposed identical. Various grain sizes between 500 and

0.5 nm are studied and impedance spectra are shown in com-

plex plane and Bode representations.

Keywords Nanocomposite · Nanoceramics · Grain

boundaries · Impedance spectroscopy

1. Introduction

Boundaries play a very important role for the electrical prop-

erties of polycrystalline (ceramic) and polyphase (composite)

materials. A boundary can be defined as a two-dimensional

transition region between two phases (then more precisely:

phase boundary) or two grains (then more precisely: grain

boundary, gb). In the following, the term “interface” is used

as synonym of the word “boundary”. To understand their

influence, it is necessary to consider transport along (i.e. par-

allel to) the boundary and transport across (i.e. perpendicular

to) the boundary. The problem of transport along and across

interfaces in polycrystalline ionic conductors has been tack-

led by Jamnik and Maier [1].

A gb can be represented by a core region, with modi-

fied defect concentrations and mobilities, and two adjacent

and symmetrical space charge regions with modified charge

R. Bouchet (�) · P. Knauth · J.-M. Laugier
Madirel (UMR 6121), Université de Provence-CNRS,
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carrier concentrations, but carrier mobilities identical to the

grain interior values, according to the space charge model

[2]. One has also to take explicitly into account the type

of electrical conduction in the considered material. In elec-

tronically conducting solids, a generally accepted physical

interpretation for charge carrier blocking at boundaries is the

presence of interface states due to segregated impurities or

defects, which “trap” the electronic carriers. The associated

depletion regions around the boundary can be described as

double Schottky barriers [3].

In solid ionic conductors, “parallel” boundaries can pro-

vide fast conduction paths for ions. It is well known for a

long time in metallic materials that the high defect density

and large free volume in the boundary core lead to enhanced

atomic transport so that the boundary core represents a high

diffusivity region. This enhanced intergranular diffusion was

also observed in ionic solids, such as oxides [4]. A blocking

character of perpendicular boundaries (in the following also

called “series” boundaries) is often interpreted by the pres-

ence at the boundary core of a precipitated secondary phase

with low conductivity, leading to current constriction effects

[5]. A conceptual difficulty is that high conductivity parallel

boundaries must percolate through the whole sample in or-

der to give a measurable enhancement effect, which means

that the ionic charge carriers must also pass perpendicular

boundaries. This problem can however be lifted by consid-

ering that the perpendicular gb are inhomogeneous, so that

the charge carriers can “leak” through.

The importance of highly conducting space charge regions

adjacent to the boundary core for conductivity enhancement

and blocking effects has been demonstrated in ionic con-

ductor composites and thin-films [2]. Enhancement effects

are expected if accumulation layers with increased charge

carrier concentration are formed. Depletion layers lead to

charge carrier blocking effects. Boundary blocking due to
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ionic charge carrier depletion in space charge zones was dis-

cussed recently in zirconia [6]. These effects can be treated

by analytical equations in the semi-infinite case or by numer-

ical simulations when grain size and Debye length become

comparable (mesoscopic effects) [7].

A very elegant experimental method to study transport

in the grain interior (“bulk”) and at interfaces is impedance

spectroscopy, i.e. measurements of the a.c. current response

to a small a.c. voltage perturbation (or vice versa) as func-

tion of the a.c. frequency. The characteristic time constants of

bulk and boundary responses are given by the ratio of specific

electrical properties, i.e. dielectric permittivity over electrical

conductivity. The grain interior contribution is usually ob-

served at high frequency, whereas the contribution of series

gb is observed at lower frequency. Since the classical work

of Bauerle in 1969 [8], the electrical properties of polycrys-

talline materials are generally determined by this technique

with a.c. frequencies typically in the range between 106 and

10−1 s−1 [9]. However, one has to assume an equivalent cir-

cuit representing the 3D sample topology of polycrystalline

or polyphase materials in order to interpret raw impedance

data.

Still the most important approach is the elementary brick-

layer model (BLM) outlined at the end of the 1970’s

[10–12]. In this model, the grains are represented by cubes

with a certain size, separated by homogeneous gb with con-

stant thickness (in our case: 0.5 nm, which is the value

adopted in the classical Fisher model of gb diffusion [13]).

Finite element calculations in microcrystalline ceramics con-

sidered deviations from cubic grain shape, a grain size dis-

tribution, imperfect contact between grains, due to pores or

secondary phases, and inhomogeneous gb with a conductiv-

ity distribution [14–16]. For polycrystalline materials with

sufficiently large grain size, the contribution of “parallel”

boundaries to the current transport is generally negligible,

given the very unfavorable ratio of grain and parallel bound-

ary areas.

However, the contribution of parallel boundaries increases

with decreasing grain size and if the parallel gb conductivity

is significantly larger than the grain conductivity [17]. An

impedance analysis of polycrystalline ceramics based on a

“generalized” BLM with resistive grain boundaries was pre-

sented by Mason and coworkers [18, 19]. Very recently, a

3D composite model was developed for polycrystalline ma-

terials covering grain boundary volume fractions from near

1 (nanoscale) to near 0 (microscale) [20] and including grain

shape and periodicity effects [21]. In the limit of nanocrys-

talline materials, where grain size and gb width become com-

parable, the parallel path can have a significant influence on

the overall impedance of the sample. Kleinlogel and Gauck-

ler [22] studied the case of CoO-CeO2 nanocomposites and

showed the influence of the parallel boundaries on the electri-

cal properties: a change from ionic to electronic conduction

can be observed depending on the experimental conditions.

Furthermore, they used impedance spectroscopy to analyze

the sample microstructure.

We have generalized the BLM analysis, taking parallel

gb path explicitly into account and calculating analyti-

cal equations for one unit cell and for a 3-dimensional

model ceramic [23]. In this work, we assumed a strongly

anisotropic behavior of the boundaries, in accordance with

the usual assumption in the electroceramics community.

The conductivity along the parallel boundary (“parallel”

conductivity) was varied between very small and very

large values. The conductivity across the series boundary

(“perpendicular” conductivity) was taken as a small constant

value, in other words the series boundary was considered

blocking. The dielectric permittivity was assumed identical

for grain interior and boundaries. The numerical simulation

for constant gb thickness (0.5 nm) and three grain sizes (5,

50, 500 nm) showed that below a certain threshold value

of parallel conductivity, depending on the grain size, the

influence of the parallel path is negligible. Above this value

however, the influence of the parallel path can lead to signif-

icant errors and, at the smallest nanocrystalline size, totally

wrong conclusions can be drawn using the classical BLM.

The following results were derived in this case:

1) An important conclusion is that grain and gb arcs do not

overlap with decreasing grain size in the complex plane

representation. Two impedance arcs are always observed,

except if the ratio dielectric permittivity over electrical

conductivity is identical for grain and gb.

2) A simple criterion for the validity of the classical BLM is

based on the characteristic relaxation frequencies for low

and high frequency arcs. As long as they are grain-size

independent, the influence of the parallel path is negligible

and the BLM can be used. For large grain sizes, this is

usually the case.

3) If the relaxation frequencies change, the usual attribution

of low frequency response to blocking gb and high fre-

quency arc to grain interior is incorrect. The observed

impedance is a complex combination of the electrical

parameters of the different elements, which must then

be calculated by resolution of the complicated analytical

equations.

However, our previous approach did not take into account

the following points:

1) The anisotropic case was discussed, but the “isotropic”

case, where parallel and perpendicular gb conductivity

are identical, was not considered.

2) Further size reduction below 5 nm leads to a case, where

grain and gb regions have comparable size, but differ-

ent conductivity. The grain size variation discussed here

leads all the way from a single crystal to a material with
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sub-nanometer domains with different conductivity,

which can be assimilated to a “core-shell” nanocomposite

solid.

In the following, we present an extension of our previous

approach.

2. Theoretical analysis

Figure 1 shows a schematic representation of a polycrys-

talline material used in the BLM and below one unit cube,

representing an individual grain with grain size D and its 6

boundaries (thickness d) with adjacent grains. The equivalent

electrical circuit is shown in Fig. 2.

Fig. 1 (a) Brick layer model and (b) one unit cube.

Fig. 2 (a) Electrical equivalent circuit.

The grain volume equals D3 and its electrical properties

are the electrical conductivity σ g and the dielectric permit-

tivity εg . The volume of the parallel gb can be written:

Vgb// = (2D + d)(D + d)d (1)

The volume of the series gb is:

Vgb⊥ = D2d (2)

The electrical conductivity σgb and the dielectric permittivity

εgb are assumed identical for parallel and series gb (σgb⊥ =
σgb// = σgb).

2.1. Series path of the equivalent circuit for one unit

cube

On the series side, the resistance and capacitance of grain

and (perpendicular) gb can be written (cf. Fig. 2):⎧⎪⎨⎪⎩
Rg = 1

σg D
(3)

Cg = εg D (4)⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rgb⊥ = d

σgb D2
(5)

Cgb⊥ = εgb D2

d
(6)

The grain impedance equals (j: imaginary unit):

Zg = Rg

1 + jωRgCg

(7)

The characteristic circular frequency of relaxation is:

ωg = 1

RgCg

= σg

εg

. (8)

One can write similar equations for the series gb:

Zgb⊥ = Rgb⊥
1 + jωRgb⊥Cgb⊥

(9)

The characteristic circular frequency of the series gb is:

ωgb = σgb

εgb

(10)

2.2. Parallel path of the equivalent circuit for one

unit cube

The resistance and capacitance of parallel gb are:

Rgb// = D + d

σgb(2D + d)d
(11)
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Cgb// = εgb(2D + d)d

(D + d)
(12)

The impedance of the parallel gb is:

Zgb// = Rgb//

1 + jωRgb//Cgb//

(13)

The characteristic circular frequency of the parallel gb is:

ωgb// = σgb

εgb

(14)

2.3. Total equivalent circuit for one unit cube

The total impedance is given by the equation:

Z = (Zg + Zgb⊥)Zgb//

Zg + Zgb⊥ + Zgb//

(15)

After some elementary (but time-consuming) algebra, the
final Eq. (16) follows:

Z =
Rgb//(Rg + Rgb⊥)

Rg + Rgb⊥ + Rgb//

[
1 + jω

Rg Rgb⊥(Cg + Cgb⊥)

Rg + Rgb⊥

]
1 + jω

[RgCg(Rgb⊥ + Rgb//) + Rgb⊥Cgb⊥(Rg + Rgb//) + Rgb//Cgb//(Rg + Rgb⊥)]

Rg + Rgb⊥ + Rgb//

− ω2 Rg Rgb⊥ Rgb//(CgCgb⊥ + CgCgb// + Cgb⊥Cgb//)

Rg + Rgb⊥ + Rgb//

(16)

This equation is of the form:

Z = K (1 + jωτ1)

1 + jωτ2 + ( jωτ3)2
(17)

It is analogue to that obtained for a classical circuit com-

posed of two parallel resistor-capacitor elements in se-

ries {(R1//C1)⊥(R2//C2)}. In other words, the two circuits

{(R1//C1)⊥(R2//C2)} and {(Rgb////Cgb//)//[(Rg//Cg)⊥
(Rgb⊥//Cgb⊥)]} have a similar impedance response. The re-

lations between the two circuits can be obtained by solving a

system of 4 equations with 4 unknown (R1, R2, C1, C2) and

6 relevant parameters (Rgb//, Cgb//, Rg, Cg, Rgb⊥, Cgb⊥), in-

cluding the equation:

R1 + R2 = Rgb//(Rg + Rgb⊥)

(Rg + Rgb⊥ + Rgb//)
(18)

There is no unique solution of this set of equations, but sev-

eral parameter sets can solve this system. This means that at

least 2 of the 6 parameters must be known in order to de-

termine the others. The algebraic resolution gives non-linear

and very clumsy results [23]. One of the main conclusions

is that whatever the effect of the parallel path, one observes

two arcs in the complex plane “Nyquist” plot if the relaxation

frequency of grain and series gb are different (νg �= νgb) and

one arc only in the case νg ≈ νgb. This means also that grain

and gb arcs do not overlap with decreasing grain size, but

only if the specific electrical properties become equal. For

small differences of the characteristic circular frequencies, it

is more appropriate to show the impedance data in the Bode

representation, i.e. as function of a.c. frequency.

2.4. Impedance of a 3-dimensional (3D) sample

To extent the calculation from one unit cube to a 3D ceramics,

we introduce the number NL of grains and series gb in a 3D

sample of thickness L:

NL = L/(D + d) (19)

Furthermore, we calculate the number of grains and gb per

unit area using the surface area of the 3D sample of radius r:

NS = πr2/(D + d)2 (20)

We have NL grains in series forming a transmission line.

NS of these transmission lines are in parallel. An elementary

calculation gives the total impedance Z tot of the 3D ceramics,

using Eq. (15):

Z tot = L

πr2
(D + d)

Zgb//(Zg + Zgb⊥)

Zgb// + Zgb⊥ + Zg

(21)

2.5. Numerical simulation

Impedance spectra are simulated for a cylindrical sample of

4 mm diameter and 1 mm thickness. The grain size effect

is observed for grain sizes between 500 and 0.5 nm. In all

simulations, the gb thickness is assumed to be d = 0.5 nm,

the value adopted in the classical Fisher model of gb diffu-

sion. The dielectric permittivities are set equal, assuming a

typical dielectric constant of 10. The grain conductivity is

taken as 10−3 S/m and the gb conductivity is varied between

10−7 and 1 S/m. The a.c. frequency is varied between 108

and 10−3 s−1. The Figs. 3a–6a present normalized complex

plane impedance spectra using the BLM model for 4 discrete

grain size values: 500, 50, 5 and 0.5 nm. Impedance data in

Bode representation are shown in Fig. 3b–6b (modulus) and

3c–6c (phase). The influence of the gb conductivity on the

impedance at low frequency is here observed more easily

than in the complex plane plots. Furthermore, we show in

Figure 7a grain size dependence of the ceramic electrical

conductivity, calculated using the BLM.
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Fig. 3 Simulated impedance
spectra for a cylindrical pellet
with 4 mm diameter and 1 mm
thickness. The mean grain size
is taken as D = 500 nm. The
grain conductivity is taken as
σg = 10−3 S/m and the gb
conductivity is varied between
10−7 and 1 S/m. a) Complex
plane plot, b) Bode modulus
representation, c) Bode phase
representation.

3. Results and discussion

The main features of this model can be discussed for two

ceramic microstructures with extreme grain sizes. For the

largest grain size (500 nm, Fig. 3), the respective contribu-

tion of grain and gb to the overall resistance can be esti-

mated easily for low gb conductivity σgb ≤ 10−5 S/m from

the complex plane plot (Fig. 3a, see below Eq. (26)). In the

Bode representations (Fig. 3b and c), two time constants can

be clearly observed, the resistance of the series gb is observed

at low frequency, and the bulk resistance is not changed. For

higher grain boundary conductivity values, only one relax-

ation time is visible in the investigated frequency range. For

a gb conductivity above the grain value (σgb > 10−3 S/m),

the analytical equations must in principle be resolved to cal-

culate the different electrical parameters. However, given the
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Fig. 4 Simulated impedance spectra using the BLM model for a cylin-
drical pellet with 4 mm diameter and 1 mm thickness. The mean grain
size is taken as D = 50 nm. The grain conductivity is taken asσg = 10−3

S/m and the gb conductivity is varied between 10−7 and 1 S/m. a)
Complex plane plot, b) Bode modulus representation, c) Bode phase
representation.

Springer



J Electroceram (2006) 16:229–238 235

Fig. 5 Simulated impedance spectra using the BLM model for a cylin-
drical pellet with 4 mm diameter and 1 mm thickness. The mean grain
size is taken as D = 5 nm. The grain conductivity is taken as σg = 10−3

S/m and the gb conductivity is varied between 10−7 and 1 S/m. a)
Complex plane plot, b) Bode modulus representation, c) Bode phase
representation.
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Fig. 6 Simulated impedance spectra using the BLM model for a cylin-
drical pellet with 4 mm diameter and 1 mm thickness. The mean
grain size is taken as D = 0.5 nm. The grain conductivity is taken

as σg = 10−3 S/m and the gb conductivity is varied between 10−7 and
1 S/m. a) Complex plane plot, b) Bode modulus representation, c) Bode
phase representation.
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Fig. 7 Grain size dependence of the electrical conductivity of a cylindrical pellet with 4 mm diameter and 1 mm thickness using the BLM model
for 4 gb conductivity values: 10−6, 10−4, 10−2 and 1 S/m.

very unfavorable gb/grain area, an important short-circuit of

the grain resistance by the parallel path is only observed

for the largest gb conductivity, 1 S/m (Fig. 3b and Fig. 7).

Therefore, if only one relaxation time is visible, the diam-

eter of the arc can be taken in first approximation as the

grain resistance. The general conclusion is that parallel ef-

fects are usually small for large grain size and isotropic grain

boundaries. The BLM can be used most often without major

problems.

When the grain size decreases (D = 50 nm cf. Fig. 4,

D = 5 nm cf. Fig. 5), the overall impedance is progressively

dominated for low gb conductivity by the low frequency arc,

corresponding to the blocking grain boundary (see Fig. 7).

This reflects the progressive increase of the grain boundary

volume fraction in the Bauerle model. At very small grain

size, the parallel boundary effect appears for σgb of the same

order as σg, i. e. for D = 0.5 nm and σgb = 10−3 S/m, the

diameter of the perfect semicircle (Fig. 6a) is equal to one

half of the grain resistance. The Bode plots (Fig. 6b and

c) show most clearly the influence of the grain boundary

conductivity and of the parallel path for high σgb on sam-

ple impedance. Two relaxation frequencies are observed for

σgb > 10−4 S/m. In the Nyquist plot for 0.5 nm grain size

(Fig. 6a), the impedance arcs appear slightly depressed for

σgb > 10−3 S/m. In this case, the classical BLM has no phys-

ical significance. Only a resolution of the analytical Eqs.

(18–21) permits the calculation of individual electrical pa-

rameters of grain and gb. However, the recently published

“composite” model [20, 21] shows that both the classical

BLM and the generalized BLM become physically unrealis-

tic for grain sizes less than approximately ten times the grain

boundary thickness. This shows up as DC conductivities less

than the Hashin-Shtrikman lower bound, which is physically

impossible for a two-phase composite system. Even though

the generalized BLM is an improvement over the classical

BLM, it still requires current to remain in one path or the

other (the grain core/capping grain boundary path vs. the

parallel grain boundary path of Fig. 1) instead of being able

to communicate between the two paths (as in the “real” situ-

ation). The generalized BLM can be up to 30% in error when

grain size and grain boundary width become comparable.

Let us now summarize the general conclusions from this

model.

1) A single perfect impedance arc is obviously observed

when grain and gb conductivity are identical (σgb = σg =
10−3 S/m), but also, in the isotropic case, when the grains

are completely short-circuited by parallel grain boundaries

(σgb � σg leading to Rgb// � (Rg + Rgb⊥)). In the last case,

the resistance of series grain boundaries is completely negli-

gible in front of grain resistance leading to a single relaxation

time. These effects are most clearly observed in the Bode

plots (Fig. 3–6b and c). Using Eq. (18), it is apparent that

the low frequency real axis intercept of this arc equals the

parallel gb resistance (Fig. 7), in total contradiction with the

conventional assumption:

R1 + R2 ≈ Rgb// (22)

For all other cases, we observe two more or less overlap-

ping semi-circles.
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2) For low gb conductivity values (σ gb << 10−3 S/m), the

parallel path is negligible:

Zgb// >> (Zg + Zgb⊥) (23)

Using Eq. (15), the impedance of the system is therefore of

the classical form [8, 9, 19]:

Z = Zg + Zgb⊥ (24)

The characteristic relaxation frequencies are:

ωg >> ωgb⊥ (25)

The high frequency arc can be safely attributed to the grain

interior and the low frequency arc to the series gb. The ratio

of grain and gb resistance or capacitance is proportional to

the grain size:

Rg

Rgb⊥
= σgb D

σgd
(26)

Cg

Cgb

= εgd

εgb D
(27)

These simple equations can give useful insight into the sam-

ple microstructure and specific electrical properties of grain

and gb [18, 22].

4. Conclusions

The grain-size dependence of impedance spectra was dis-

cussed based on analytical equations obtained from the

equivalent circuit of a microstructural 3D model of elec-

troceramics, taking the parallel gb path explicitly into ac-

count. In this work, isotropic boundaries are considered:

this corresponds physically for example to ionic conduct-

ing ceramics without precipitated gb phases or composite

materials with core-shell structure. Comparing our previous

work with anisotropic gb, a major difference of the isotropic

gb model is that a single impedance arc can be observed

for large gb conductivity values, i.e. when the series path

(grain + series gb) is completely short-circuited by the par-

allel gb path.

Concerning the implications for experimental measure-

ments on nanocrystalline ceramics and nanocomposites,

impedance spectroscopy is an excellent tool for character-

ization of electrical properties of such materials. However, it

needs a specific electrical model, based on a careful consider-

ation of the microstructure. Furthermore, the experimentally

accessible frequency domain is classically limited, from 107

to 10−4 s−1 in the best case. In Nyquist plots, we show that

in most cases only one arc is apparent while the second is too

small to be observed 1) at high frequency either when σ gb

>> σ b or for nanocrystalline ceramics with blocking gb 2) at

low frequency in the microcrystalline case when σgb slightly

above σ b.

The measurement of grain properties in nanomaterials is

thus not a trivial task. One should always compare with the

same material as single crystal and in microcrystalline form.
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17. H. Näfe, Solid State Ionics, 13, 255 (1984).
18. J.-H. Hwang, D.S. McLachlan, and T.O. Mason, J. Electroceramics,

3, 7 (1999).
19. T.O. Mason, J.-H. Hwang, N. Mansourian-Hadavi, G.B. Gonzalez,

B.J. Ingram, and Z.J. Homringhaus, in Nanocrystalline Metals and
Oxides: Selected Properties and Applications, edited by P. Knauth
and J. Schoonman (Kluwer Academic, Boston, 2002), p. 111.

20. N.J. Kidner, Z.J. Homrighaus, B.J. Ingram, T.O. Mason, and E.J.
Garboczi, J. Electroceramics, 14, 283 (2005).

21. N.J. Kidner, Z.J. Homrighaus, B.J. Ingram, T.O. Mason, and E.J.
Garboczi, J. Electroceramics, 14, 293 (2005).

22. C.M. Kleinlogel and L.J. Gauckler, J. Electroceramics, 5, 231
(2000).

23. R. Bouchet, P. Knauth, and J.-M. Laugier, J. Electrochem. Soc.,
150, E348 (2003).

Springer


